バイパスダイオード内蔵太陽電池パネルの開発

Development of solar panels with built-in bypass diode

技術開発部 プロジェクト研究科 小野裕道 三瓶義之 小林翼 本田和夫 国立研究開発法人産業技術総合研究所 福島再生可能エネルギー研究所 高遠秀尚 白澤勝彦 水野英範 望月敏光 福島双羽電機株式会社 本田剛 アンフィニ株式会社 川崎俊弘 根本克広 木村太亮

太陽電池パネルの設置場所の拡大のため、バイパスダイオードをパネルに内蔵し裏面の ジャンクションボックスを無くした太陽電池パネルを開発する。厚さ0.7[mm]の薄型バイパ スダイオードを開発し、これを内蔵した太陽電池パネルを試作した。電流バイパス時のバイ パスダイオードの熱を効率的に放熱する設計を行い、定格電流12[A]を流してもバイパスダ イオードの温度上昇を55[℃]以下に抑えることができた。

Key words: 太陽電池パネル、バイパスダイオード、内蔵

1. 緒言

再生可能エネルギーにより発電した電力の固定価格 買い取り制度により、再生可能エネルギー発電設備が 大量に導入された。特に太陽光発電の導入量の増加は 大きく、さらなる拡大をめざし自動車車載用や建材一 体型など設置箇所も多様化している。

現在の太陽電池パネル(以下:モジュール)は裏面 に突起となるジャンクションボックスがある。これが、 車両や建材に張り付ける際に障害となるため、ジャン クションボックスを省くことが求められている。しか し、ジャンクションボックス内には、太陽電池モジュ ールに影がかかるなどの不具合が発生した際に、電流 をバイパスさせて太陽電池セルを保護する役割のバイ パスダイオードが設置されている。このため、ジャン クションボックスを単純に取り除くあるいは移動させ ることはできず、裏面の突起を無くし、意匠性に優れ た薄型太陽電池モジュールを生産することは難しい。

そこで、ハイテクプラザは福島県内の企業2社と産 業技術総合研究所福島再生可能エネルギー研究所 (FREA)と共同で、バイパスダイオードを内蔵した太 陽電池モジュール及び実装技術の研究開発を行った。 本報告では、薄型バイパスダイオードを開発し、これ を内蔵した太陽電池モジュールを製作した結果を報告 する。

2. 実験及び結果

2. 1. 薄型バイパスダイオードの開発

2.1.1. 熱膨張の応力緩和構造の開発

バイパスダイオードは屋外直射日光による加熱に加 えて、バイパス動作時にはダイオードを流れる電流の 抵抗加熱によりダイオードチップ自体が発熱する。日 中-夜間の温度変化に加え、バイパス動作の 0N/0FF に

図1 バイパスダイオードの外観

表1 構造シミュレーション条件

解析ソフトウェア	Solid Works Professional				
端子形状	• M008-H2-01				
	・静変形解析				
解析条件	・表裏面の変形拘束				
	・端子間に強制変位 0.2[mm]				
井丁	・相当応力				
衣小	・変位量				

よる熱膨張--収縮は、ダイオードに引張・圧縮応力を加 え破損させる恐れがある。

そこで、図1のようにばね性により応力の集中を緩 和するための曲げを入れたダイオードの端子の形状に ついて検討した。3次元 CAD SolidWorks を用いて接続 されたタブ線の熱収縮に相当する強制変位 0.2[mm]を 与えた端子の応力分布をシミュレーションし、その有 効性を評価した。解析条件を表1に示す。

シミュレーションにより得られた薄型バイパスダイ オードの相当応力とその集中部位を図2に示す。この 結果、単純な平板からなる端子では破損する条件であ っても、曲げにより応力を分散することで、破損を避 けることができることが確認できた。

図2 シミュレーション結果

2. 1. 2. 薄型バイパスダイオードの試作

太陽光発電モジュールは、太陽電池セル(厚さ 300[µm]以下)とインターコネクタ(厚さ0.3[mm])、タ ブ線(厚さ0.3[mm])がラミネートされている。バイパ スダイオードを太陽光発電モジュールに内蔵させるた めには、これらを重ねた最大の厚さ、0.9[mm]以下の厚 さであることが求められる。

また、屋外の直射日光下に長時間、設置されること が前提であるため、ダイオードチップは内部保護のた め樹脂モールドで封止されていることが望ましい。

これらの条件を満たす薄型バイパスダイオードの試 作は、福島双羽電機株式会社が取り組んだ。

2. 2. 太陽光発電モジュールの放熱設計

2.2.1. 薄型バイパスダイオードのラミネート試験

試作した薄型バイパスダイオードを太陽光発電セル と共にラミネートすることを試みた。薄型バイパスダ イオードをタブ線にはんだ付けし、太陽光発電モジュ ールと同様にエチレン・酢酸ビニル共重合体 (Ethylene-vinyl acetate copolymer 以下 EVA)フ ィルムではさみ真空加熱ラミネーターでガラス板にラ ミネート加工した。ダイオードの温度測定のため、ダ

図3 ラミネート試験

イオードの裏面にシース熱電対を同時にラミネートした。図3に示すように、熱電対の周辺に EVA の剥離があるものの、薄型バイパスダイオード周辺には気泡もなくラミネートできることを確認した。

2. 2. 2. 薄型バイパスダイオードの熱抵抗の測定

薄型バイパスダイオードを太陽電池モジュールに使 用するには、太陽電池モジュールが太陽光により昇温 し、さらにラミネートされた薄型バイパスダイオード から発熱があったとしても、ダイオードの動作温度範 囲である150[℃]以下に保つことが求められる。

一般に、電子回路の熱設計では、素子の消費電力ご との上昇した温度を測定し、消費電力と温度の傾きで ある熱抵抗 Rth[K/W]を算出して評価する。これと同様 に薄型型バイパスダイオードについても、熱抵抗を求 め、周辺への放熱の状況を評価した。

内蔵された薄型バイパスダイオードの発生した熱の 大部分はタブ線によりモジュール内を伝導すると考え られる。そこで、タブ線の幅を変えてダイオードを接 続し、通電した際のダイオードの温度上昇を測定する ことで、タブ線の幅の違いによる熱抵抗の違いを測定 した。タブ線の幅を1.5[mm]と6[mm]、12[mm]の3種類 とし、これと比較のため市販の外付けのジャンクショ ンボックスに内蔵されたダイオードも測定した。

作製した試料に太陽電池モジュールの定格電流を想 定して定電流電源より表2に示す条件で通電し、熱電 対でダイオードのカソード端子側の温度上昇を測定し た。消費電力と薄型バイパスダイオードの温度上昇を 図4に示す。タブ線の幅が広くなると放熱量が大きく なり、温度上昇は抑制された。最もタブ線幅が広い幅 12[mm]の熱抵抗は24.2[K/W]で、12[A]を通電した際 120[℃]の温度上昇があった。これは日中の日向設置で パネル温度が30[℃]以上であれば、150[℃]を超えて しまい不具合の原因となる。そこで温度上昇を抑制す る配置方法の開発に取り組んだ。

令和元年度福島県ハイテクプラザ試験研究報告

図4 消費電力と薄型バイパスダイオードの温度上昇

比較対象である従来の外付けのジャンクションボッ クスに内蔵されたバイパスダイオードの熱抵抗は 14[K/W]であり、これと同程度を、太陽光モジュールに ラミネートした薄型バイパスダイオードの熱抵抗の目 標とした。

2.2.3. 薄型バイパスダイオードの並列配置

通電している薄型バイパスダイオードの発熱を抑制 するには、電流を減らすことが有効である。このダイ オードに使用したショットキーバリアダイオードの電 流一電圧特性は比例関係になく、電流値を1/2にすれ ば電圧降下は1/2以下となる。そのためダイオードを 2個並列に配置すれば、1 個あたりの消費電力は 1/2 以下になり、発熱の総量は減少する。

そこで図5に示すように薄型バイパスダイオードを 並列配置し、通電した際の温度上昇を測定した。ラミ ネートしたダイオードを表2の条件で通電し、その温 度上昇を測定した結果を図6に示す。並列に2個配置 したことで温度上昇は抑制され、熱抵抗は16.9[K/W] まで減少した。

2. 2. 4. 放熱経路の設計

バイパスダイオードの温度上昇を抑えるためには、 タブ線への放熱量を増やすことが効果的である。しか し、ガラス板の表面の温度分布をサーモカメラにより 観察すると、図7のとおりダイオード周辺部に急な温 度勾配が観察される。これはダイオード周辺で放熱が

図5 薄型バイパスダイオードの並列配置

図6 並列配置した薄型バイパスダイオードの温度上昇

図7 ガラス表面の温度分布

妨げられていることを示している。そこで、この原因 についてシミュレーションにより探索した。ダイオー ドからタブ線までを図8のとおりモデル化し、CAE に より温度分布を求めた。バイパスダイオードの熱は、 厚さ 0.1[mm]の端子を介してタブ線-EVA-ガラス板あ るいはバックシートへ伝導し、ガラス板とバックシー トから空気へ伝達する。解析したところ、図9に示す 大きな勾配の温度分布が算出された。これは発熱体で あるダイオードとタブ線を熱接続する端子が薄いため、

図10 薄型バイパスダイオードとタブ線の温度勾配

この部分で伝熱量が制限されたと考えられる。端子の 薄い部分を少なくするため、ダイオードとタブ線の距 離を縮めて解析すると、伝熱量は増加しガラス表面の 温度分布は図10のとおりとなり、急な温度勾配は解 消した。

このように、薄型バイパスダイオードの端子が熱伝 導の律速である可能性があることから、それを解消す るため薄型バイパスダイオードとタブ線を熱的に接続 することを試みた。薄型バイパスダイオードは図11 に示すとおり、中央部は樹脂封止されているものの、 カソード側の電極は露出している。図12に示すよう にカソード電極とタブ線を熱的に接続できれば伝熱量 の増加が期待できる。はんだ付けあるいはろう付けは 熱伝導性に優れているが、接合時の加熱により薄型バ イパスダイオード内のダイオードチップと端子のはん だが再溶融することが懸念される。そこで、薄型バイ

図12 カソード側電極熱接続の模式図

パスダイオードのカソード電極とタブ線の熱接続は、 固化する際にはんだ溶融温度まで加熱されない導電性 エポキシ接着剤で行い、端子とタブ線の電気接続は、 端子先端部のはんだ付けとした。

2.3.発熱量を抑制したバイパスダイオードの開発

薄型バイパスダイオードの通電による発熱量を低減 させるためには、内蔵されるダイオードチップの電気 抵抗を小さくすることが有効と考えられる。

そこで、1つのパッケージにダイオードチップを2 個並列に内蔵したダイオード及び、より電流容量の大 きいダイオードチップを内蔵したダイオードを試作し、 電気特性と発熱特性を評価した。

使用したダイオードチップの特性を表3に、試作した薄型バイパスダイオードの外観を図13及び図14 に示す。

発熱特性を評価した結果、ダイオードチップを2個 入れたものは、温度上昇が抑えられていることが確認 された。これは、ダイオードチップを並列に入れたこ とによりも電気抵抗が低下したことと発熱源が分散さ れるために熱抵抗の面で有利に働いたことが原因と考 えられる。

一方、より電流容量の大きいダイオードチップを内 蔵したダイオードでは、むしろ発熱量が上昇する傾向 が見られた。これは、電流容量を大きくしたことで順

薄型バイパス ダイオード型式 (モールドタイプ)	ダイオードチップ仕様
SBM2440	平均整流電流:12[A] 繰り返しピーク逆電圧:40[V]の ダイオードチップ2個使用
SBM1545	平均整流電流:15[A] 繰り返しピーク逆電圧:45[V]の ダイオードチップ1個使用

表3 使用ダイオードチップ特性

図13 SBM2440の外観

図14 SBM1545の外観

方向の電気抵抗自体が上昇したためと考えられる。

2. 4. ミニモジュールの製作

太陽光発電セルと共にラミネートした状態で温度上 昇を評価するため、太陽光発電セルを4枚使ったミニ モジュールを作製した。一般的なモジュールは太陽光 発電セルが60枚程度直列に配置されるが、薄型バイ パスダイオード周辺の配置を模擬して、温度分布を評 価した。作製したミニモジュールを図15に示す。

2.5.温度上昇の測定

発熱素子は発熱量と放熱量が同量となれば、温度は 一定になる。ダイオードの発熱量は電流値で決まり、 放熱量は温度勾配と熱伝導路の材種と断面積で決まる。 ダイオードの温度だけで放熱経路を評価することはで

図15 温度測定用のミニモジュール

表4 実験条件

印加方向	順方向
印加電流	6A, 12A, 12.5A
装置	直流電源 PAD55-20L (菊水電子工業(株)) デジタルマルチメータ PC500 (三和電気計器(株)) K熱電対
静定時間	6分
セル設置	80° に傾け

図16 実験中の太陽光発電モジュール

きないため、電子機器の放熱設計の指標となる熱抵抗 を算出した。これは、ダイオードの消費電力当たりの 温度上昇から算出される。

バイパスダイオードに電流が通過することを想定し、 バイパスダイオードに順方向電流を通電し、消費電力 当たりの温度上昇を測定した。市販品として多く使わ れている 156[mm]×156[mm]の単結晶シリコン太陽光 発電セルは、定格出力電流は 10[A]程度が得られる。 バイパスダイオードにも最大で同量の電流が通過する ことから、12.5[A]の直流電流を負荷し試験した。実験 条件を表4に、実験の外観を図16に示す。評価した ミニモジュールの諸元と熱抵抗を表5に示す。

#11 -+ *		ホコック中日	1946時 瑞マユノブ	DDAJ문	熱抵抗	順方向印加電流		
空式	1回奴	的称响	明子サイス	DPDIE但		6A	12A	12. 5A
SMB1240	2個並列	1 2mm	180mm × 180mm	アノード-ガラス	14.8 K/W		67.6K	73. 4K
	1個並列	6mm	400mm × 400mm	カソードーガラス	21.6 K/W	53. 2K	85. 9K	-
	2個並列	1 2mm	400mm × 400mm	カソードーガラス	141 K/W	30. 7K	61.7K	65. 1K

表5 ミニモジュールの諸元と熱抵抗

表6 裏面に屋根材を張り付けたミニモジュールの熱抵抗

#II - *		地マユノブ		裏面の	劫托士	順方向印加電流			
空式 10岁	间致	日日市永平田	明テリイス	DFDEC	鋼板	恐也抗	6A	12A	12. 5A
	2個並列	2個並列 12mm 180mm×180mm	アノード-ガラス	-	14.8 K/W		67.6K	73. 4K	
SMB1240 11	1個並列 6mm	6	400		-	21.6 K/W	53. 2K	85. 9K	-
		400000 × 4000000	ガリート-ガラス	鋼板	16.8 K/W	42. 4K	70. 7K	-	
	2個並列 12mm	10	2mm 400mm × 400mm	カソードーガラス	-	141 K/W	30. 7K	61.7K	65. 1K
		I 2mm			鋼板	11.5 K/W	26. OK	51. 8K	54. 8K

この熱抵抗から算出される電流通過時の温度上昇は 65[℃]程度となり定格温度とほぼ同じになる。夏の日 向に設置されモジュール温度が上昇した場合に安全性 を確保するには、より温度上昇を抑制する必要がある。

そこで屋根材と一体に施工することを想定し、厚さ 0.5mmの鋼板製の屋根板に接着した。バイパスダイオ ードに近いバックシート部分に接着剤を塗布し、屋根 材と接着して温度上昇を測定した。同様に表4の実験 条件で熱抵抗を測定すると表6のとおり、温度上昇を 55[℃]以内に抑制することができた。これはジャンク ションボックス内に設置される従来のバイパスダイオ ードの温度上昇と同程度であった。

2. 6. 難燃性ラミネート材による太陽電池の試作

2. 6. 1. ラミネート材の選定

太陽光発電セルに影がかかるなどして発電量が下が ると、セルが発熱しホットスポットになる。バイパス ダイオードはセルに流れていた電流を迂回させ、セル の発熱は減らすが、バイパスダイオード自体が発熱す る。ダイオードの温度上昇によりモジュールのラミネ ート材が変性しないよう材種を選定する必要がある。 そこで EVA フィルムより高温に耐えられる難燃性ラミ ネート材を選定した。

2. 6. 2. ラミネート試験

薄型バイパスダイオードは太陽光発電セルよりも厚 く、ラミネート工程で気泡残りやラミネート材との剥 離が発生する懸念がある。そこで従来の EVA と難燃性 ラミネート材でラミネート試験を実施した。

太陽電池セル4枚を直列配置し、セルとタブ線をは んだ付けしたストリングを作製した。これを EVA フィ ルムと難燃性ラミネート材のそれぞれで挟み、真空加 熱ラミネーターでガラス板にラミネート加工した。

図17 ミニモジュールの外観

2. 6. 3. 外観検査

難燃性ラミネート材によるミニモジュールのラミネ ート後の外観を図17に示す。薄型バイパスダイオー ドを内蔵した太陽光発電セルよりも厚い部分に気泡が 残った。これは難燃性ラミネート材に対応したバック シートの柔軟性が低かったためと考えられた。太陽光 発電セル部分に気泡残りはなく、良好であった。薄型 バイパスダイオード内蔵太陽光発電モジュールを難燃 性ラミネート材で製作できると考えられる。

2.7.量産機によるミニモジュールの試作

2.7.1.レイアップ加工

開発した製造工程が量産工程として耐えられるか確 認するため、量産機を用いてミニモジュールの試作を 行った。太陽光発電セル4枚を直列に配置し、セルと タブ線をはんだ付けしたストリングを製作した。これ を図18の順でレイアップさせた。

4. 2. 2. ラミネート加工

レイアップしたミニモジュールをアンフィニ株式会 社の量産機でラミネートした。表7に示す条件でラミ ネートした試料を図19に示す。ラミネート後のバイ パスダイオード内蔵ミニモジュールの外観を図20に 示す。薄型バイパスダイオードの内蔵部分にシート破 損や発泡、断線は見られず、良好にラミネートできた。 開発した製造工程が量産機に適していることを確認し た。

3. 結言

薄型バイパスダイオードを開発し、これを内蔵した 太陽光発電モジュールを開発し、次の結果を得た。

- ・ダイオードチップが樹脂モールドで封止された、 厚さ 0.7mm の薄型バイパスダイオードを開発した。
- ・タブ線の温度変化による伸縮を吸収するため薄型
 バイパスダイオードの端子部にばね性を持たせた。
- ・ダイオードチップを2個使用し、電流通過時の発 熱を抑制した。
- ・薄型バイパスダイオードに順方向電流 12.5[A]を 流しても、温度上昇 55[℃]以下に抑えることがで きた。
- ・高温で変性しない難燃性ラミネート材により太陽 光モジュールを試作した。バックシートの柔軟性 が低かったため、薄型バイパスダイオード周囲に 気泡残りがあったが、良好にラミネートできた。
- ・量産機により薄型バイパスダイオードを内蔵した ミニモジュールを良好に製造でき、製造工程が量 産工程に適することを確認した。

参考文献

 小野裕道,他.福島県ハイテクプラザ研究報告書 バイパス回路内蔵太陽電池パネルの実装技術の 開発.福島県ハイテクプラザ,2020

表7 ラミネーターの条件

封止材	EVA(中国製) バックシート(中国製)					
処理条件			1層目	2層目		
	温度[℃	142	151			
	保持時間][s]	150	450		
	到達 ゲージ圧カ [kPa(G)]	1段階	-20	-20		
		2段階	-15	-10		
		3段階	-10	-5		

(a) 投入前(b) 投入後図19 ラミネーター投入前後のモジュール

図20 バイパスダイオード内蔵ミニモジュール