

弾性編地の開発と評価に関する研究

繊維・高分子科 ○中村和由、小林慶祐、石井瑞樹、東瀬慎

質問はメールにて事務局までお気軽にお問い合わせください。 問い合せ先:福島県ハイテクプラザ 企画連携部産学連携科

e-mail: hightech-renkei@pref.fukushima.lg.jp

1 研究目的

特徴:

軽量性、<u>高強力、高弾性率</u>、 耐摩耗性、耐光性、耐薬品性、 高熱伝導性、低伸度

主な現在の用途:産業資材向け

図 1 スーパー繊維(UHMWPE) の特徴と用途例

従来方法(スーパー繊維に伸縮 性(高伸度化)の付与)

化学処理、高温での熱セット を使用する方法があるが、繊維 自体の耐熱性の影響

本研究の目的:

従来の過度な熱セットを必要 としない、新たな弾性加工糸の 開発と弾性編地の試作評価

図2 弾性編地の応用例

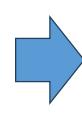
2 研究内容(目標、原料、使用機器)

表1 研究目的と目標値

項目	目的	目標値
1	スーパー繊維の伸縮性付与	伸度≥150%(0.49[N])
2	弾性編地の作製と性能評価	編地収縮率≧50[%]

表 2 原料

呼名	纖度[D]	備考
	200	超高分子量ポリエチレン
PE	100	一起同力」量がサエブレク 商標名:イザナス(株)東洋紡
	30	尚宗石・1リノス(体)呆/中初
	105	ポリウレタン
PU	70	商標名:オペロン
	30	(株)東レ・オペロンテックス


表 3 使用機器一覧

	用途	機器名
自動横編機	編地試作(7G)	SWG183-V((株)島精機製作所)
精密万能試験機	荷重、伸度の評価	AGX-20kNV(島津製作所)
合撚機		KF5型 ((株)スガ機械)
カバーリング機	 比較用加工糸の試作 	KO-U-HT(苅金機械製作所)
リリヤーン加工機		KT-8((株)小塚コーポレーション)
圧縮試験機	試作編地の圧縮評価	KES風合い試験機G-3((株)カトーテック)

2 研究内容(加工糸試作)

表 4 比較用加工糸の作成方法と表記及び特徴

加工糸	呼名	構造	特徴
合撚糸	TY		複数本の糸を同時に撚 り合わせる
芯鞘糸 カバーリング 糸	CY		芯糸を中心にして右巻 き、左巻きに鞘糸を巻 き付ける
リリヤーン糸	LY		対応する2本の針でら せん状の連続するルー プ結節をつくる

TYやCYとは異なる伸縮構造の可能性 (弾性糸(PU)との複合化)

図3 加工糸内部のPE糸長比較 (加工前長さ/加工後長さ)

2 研究内容(LY加工糸の試作)

表 5 LY用原料糸の分類

	比較用加工糸	原料糸	PE[D]	PU[D]
	LY①	TY®	100	_
単独型	LY12	PE100	100	_
	LY13	PE200	200	_
撚糸型	LY(1)	TY10	100	70
分離型	LY(T)	TY®	100	70
複合型	LY9	TY10	100	140

3 実験結果 (PE糸長と平均伸度の関係)

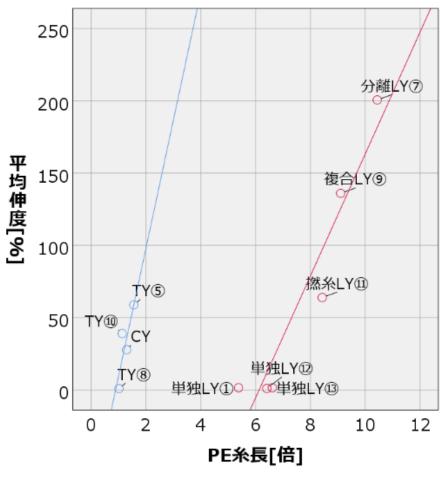


図4 PE糸長と平均伸度の 関係

タイプ	結果
単独型 LY①、 ①、③	PUを含まないため、 <mark>平均伸度は向上しない</mark> 。原料糸の 撚糸回数、PE繊度は平均伸度には影響を与えない
燃糸型 LY⑪	平均伸度が分離型LY⑦、複合型⑨に劣る。原料糸TY⑩の作製段階で、PEとPUが合撚加工により一体化され、PU本来の伸縮性が密着するPEにより制限されること。またLY加工時にPUを使用していない
複合型 LY®	分離型の二倍のPU糸量を含むが、平均伸度は分離型に 劣る。このことから平均伸度は、単純にLY内部のPU糸 量には依存しない可能性が考えられる
分離型 LY⑦	原料糸をPU無しのTYで作製し、LY加工時にTYとPUを 分離型で加工することが、PEの高伸度化に有効

3 実験結果(分離型LYの伸縮構造)

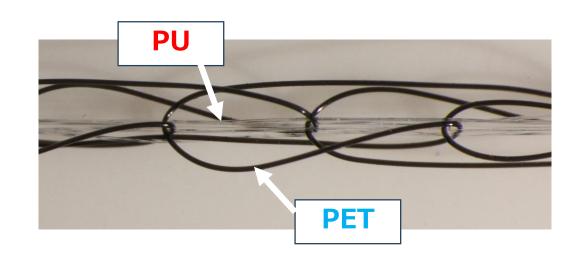
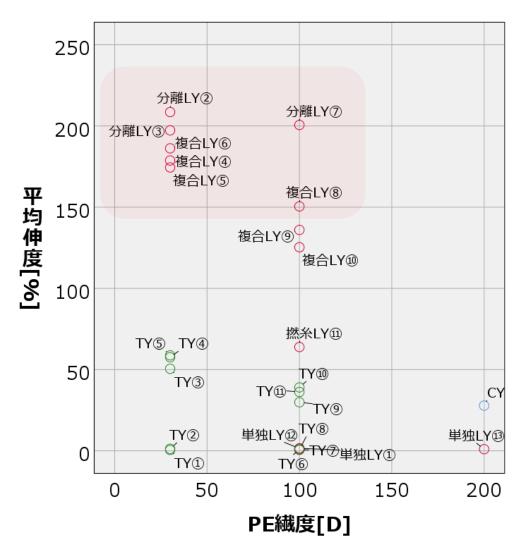
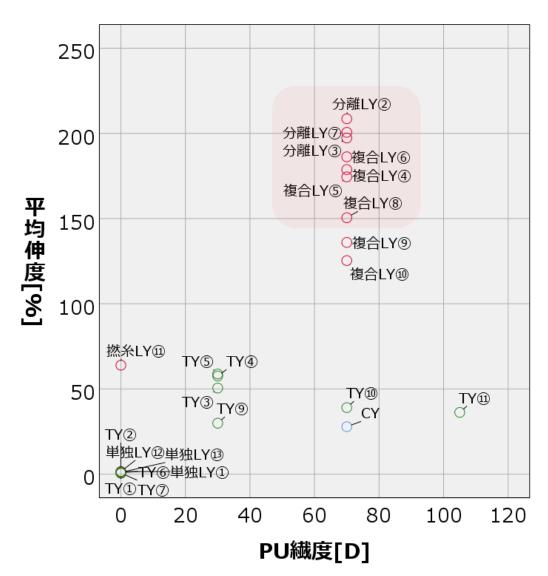



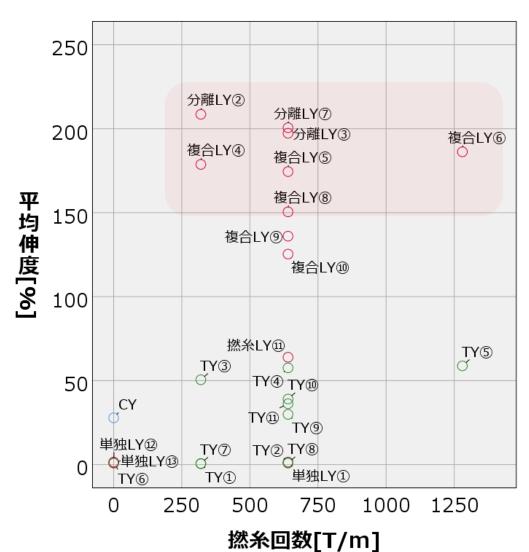
図5 分離型LYの側面画像 (PEとPUは共に表面色が白系であり、 視認性を上げるためPEを有色のPET に差し替え観察した。)

- ・分離型LYはPUは中心部分で収縮したループ結節を形成し、外側にPEが配置された立体構造(芯鞘構造)を示している。
- ・このLY内の芯鞘構造の有無が、撚 糸型と分離型の平均伸度に影響
- ・外観上はCYの芯鞘構造に類似した立体構造をしているが、中心のPUと外側のPEがループ結節で結合している点が、結節の無いCYの芯鞘構造と大きく異なる点(芯鞘の分離がない)と言える。


3 実験結果 (PE繊度と平均伸度の関係)

PE繊度30[D]は100[D]よりも平均伸度が高いと言える。 中でもLY②、LY③、LY⑦は 200[%]を超える平均伸度を示し、 LYの投入方法はすべて分離型

図6 PE繊度と平均伸度の関係


3 実験結果(PU繊度と平均伸度の関係)

LY④、LY⑤、LY⑤は複合型。TYでPU繊度30[D]、LYでPU繊度70[D]を加工糸に内在しているが、分離型や撚糸型より平均伸度は劣る。

図7 PU繊度と平均伸度の関係

3 実験結果(撚糸回数と平均伸度の関係)

燃糸回数が最大4倍異なっても平 均伸度に違いは見当たらない。

図8 撚糸回数と平均伸度の関係

3 実験結果(編地試作評価結果)

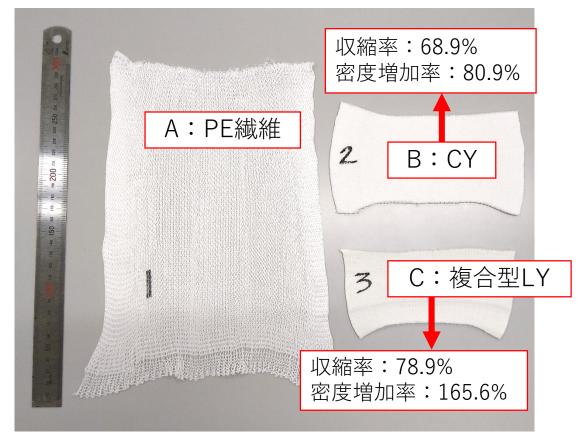


図9 試作編地の外観

編地Cは、PUを使っていないAと比べて、約1/4まで編地が圧縮され、高密度化

表 6 試作編地の圧縮試験結果

	LC	WC	RC	T0	TM/TO
	圧縮の硬	つぶれや すさ	回復性	厚み (0.49N)	圧縮性
А	0.32	0.38	42.8	1.2	0.59
В	0.38	0. 25	37.6	2.7	0.90
С	0. 43	0. 22	48.3	2. 4	0.91

編地Cは、PUを使っていないAと比べて、 厚みが1.9倍増加、LCおよびWCが高く、潰れにくい保形性に優れた編地。編地Bと比べても、回復性が高い。

4 まとめ

弾性編地の技術的視点から事業可能性の検証(FS研究)を行った。弾性 繊維体(テキスタイル、ガーメント)の性能を決定付ける弾性加工糸につ いて、既存技術(LY構造と高伸縮糸(PU))を複合した新しい製造方法の 提案を行った。

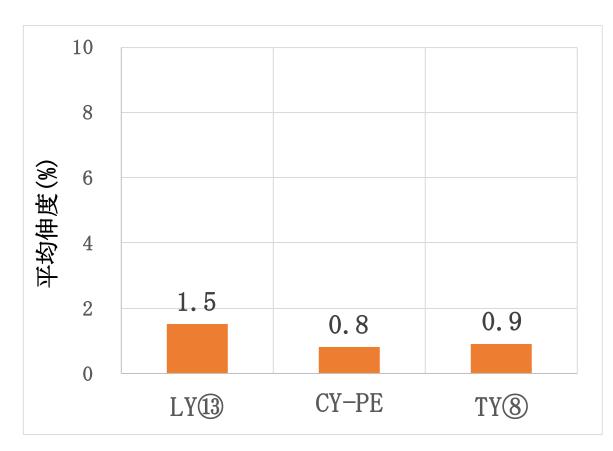
今後の活用については、下記を検討している

- ・衣服圧が求められるメディカル・ヘルスケア素材
- ・保形性・衝撃吸収性が求められるスポーツ・アウトドア素材
- ・PE繊維の熱拡散性を活用した夏用衣料素材
- ・編地立体構造を活用した素材の機能性向上

終わり

3 実験結果(編地試作結果(圧縮試験結果))

3 実験結果 (PUを含まない伸度の機構検証)


TY®に対し、CY-PEは約1.3倍、 LY®は約6.5倍のPE糸長を加工糸 の内部に集約

LY③は撚り縮みや鞘糸の巻き量が無いものの、TY®やCY-PEに比べ極めて多くのPEを加工糸の内部に蓄える糸構造

TYやCYとは異なる伸縮構造の可能性 (弾性糸(PU)との複合化)

4 実験結果 (PUを含まない伸度の機構検証)

TY®、CY-PE、LY®の伸度は約0.8~1.5%で差は小さい。

図4 加工糸の伸度比較

1 スーパー繊維について

スーパー繊維とは:

強度20g/d以上, 弾性率500g/d以上の優れた強度, 弾性率を持つ。

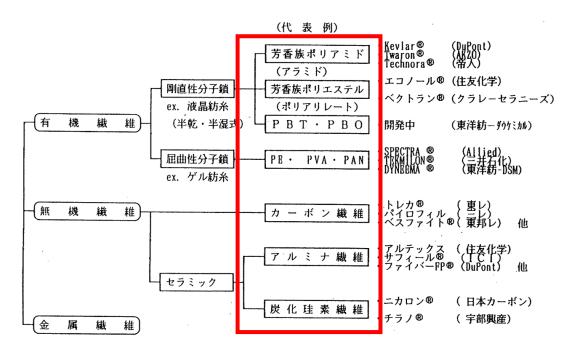
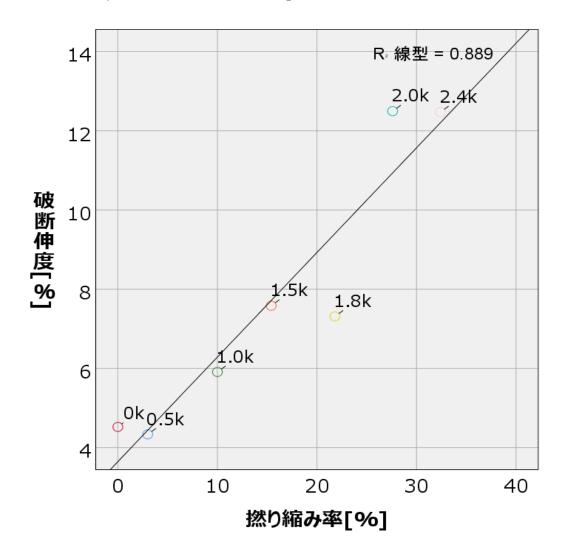


図1 スーパー繊維の代表例 (引用:繊維学会誌「スーパー繊維の用」 1995年48巻12号p.P455-P461)

				高強度化例				理論値	
	繊維種	商品名(メーカー)	強度 (g/d)	伸度 (%)	弾性率 (g/d)	融点(℃)	強度 (g/d)	弹性率 (g/d)	
有機	パラ型 アラミド	ケプラー®49 (デュポン) テクノーラ® (帝 人)	22 28	2.4 4.6	1000 590	560(d) 500(d)	235	1500	
剛直	全芳香族 ポリエステル	エコノール®(住友化学) ベクトラン®(クラレ)	30 23	3.8 3.7	1100 560	370 320	_ _		
性	ポリアゾール	PBT PBO(東洋坊-ダウケミカル)	25 40	1.2 2.5	2400 2000	600 —	<u>, — </u>	4200	
有機	ポリエチレン	ダイニーマ®(東洋紡) スペクトラ®(アライド) テクミロン®(三井石化)	30 ~ 55	2 ~ 6	800 ~ 2000	150	372	2775	
屈曲性	ポリビニルアルコーポリアクリロニトリポリアセタール ()ポリエチレンテレ	リル レナック®SD,旭化成)	22 23 11.7 13.7	4.0 7.8 7	630 268 310 273	245 230(d) 200(d) 260	236 196 — 232	2251 833 — 1023	

注) PBT (ポリーP-フェニレンベンズビスチアゾール) PBO (ポリーP-フェニレンベンズビスオキサゾール

表 1 スーパー繊維の物性の例


(引用:繊維学会誌「スーパー繊維の用」

1995年48巻12号p. P455-P461)

表 5 比較用加工糸の作成方法と表記及び特徴

10 10				伸縮性の発現
加工糸	呼名	構造	特徴	
合撚糸	TY		複数本の糸を同時に撚り合わせる	──── 撚り縮みの増加 (伸縮性大)
芯鞘糸 カバーリング 糸	CY		芯糸を中心にして右巻 き、左巻きに鞘糸を巻 き付ける	→ 芯糸のドラフト (伸縮性大)
リリヤーン糸	LY		対応する2本の針でら せん状の連続するルー プ結節をつくる	ーーー・ループ結節のたわる (伸縮性小)

3 実験結果 (PEの撚糸回数と破断強伸度の関係)

ラベル脇の数値は撚糸回数 を示しkは $\times 10^3$ 。

燃り縮み率の増加と共に破断伸度と撚糸回数は増加すると言える。TYの撚り縮み率が発生することで、PEの破断伸度が向上。

図2 PEの撚糸回数と破断強 伸度及び撚り縮率の関係

3 実験結果 (PUを含むPE糸長の関係検証)

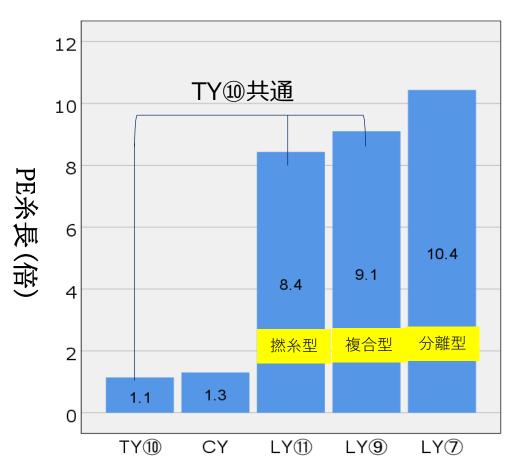


図4 PUを含む各加工糸のPE糸長

TY⑩とCYのPU糸長に大差は見られない。LY群はTY⑩の約8.5倍以上のPEを加工糸内部に集約していることを示した。

3 実験結果 (PUを含む平均伸度の関係検証)

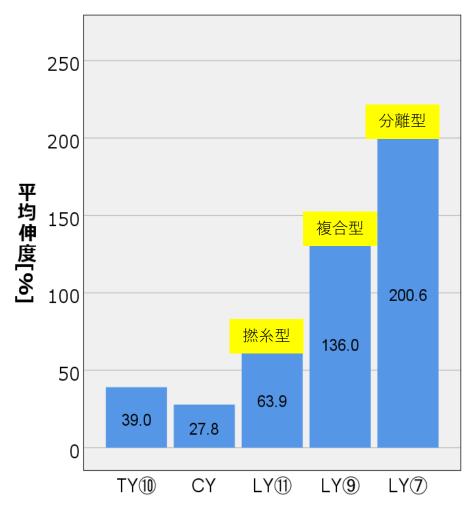


図5 LY原料糸と平均伸度の関係

- TY⑩とCYのPU糸長では大差ないものの、平均伸度では、TY⑩はCYに比べ約1.4倍の伸度。
- LY群は、TY⑩と比べて、約1.6~5.1倍の伸度
- ・LY群のPE糸長と平均伸度の関係を比較すると、原料糸とPUの組み合わせに平均伸度を左右している。特に、LY⑪とLY⑦の平均伸度の差は3倍以上(糸長の差は約1.2倍)

2 研究内容(加工糸および編地の試作条件)

表 6 TY(合撚糸)の作製条件

比松田加工文工	原料	斗糸	+始**-[m /]
比較用加工糸TY	PE[D]	PU[D]	
TY(1)		_	320
TY2		_	640
TY3	30	30	320
TY4		30	640
TY⑤		30	1280
TY®		-	0
TY(7)		_	320
TY®	100	_	
TY®	100	30	640
TY10		70	640
TYW		105	

表7 CY (芯鞘糸・カバーリング糸)の作製条件

	構成	素材	繊度[D]	撚数[T/m]	下撚[T/m]
	芯糸	PU	70	_	_
CY	鞘糸	DE	100	Z950	Z199
		PE		S1000	S199
CV DE	芯糸	PE	100	#	
CY-PE	鞘糸	PE	100	無	採撚

表8 LY(リリヤーン糸)の作製条件

比較用加工糸LY	原料	斗糸	針本数[n]
比較用加工ポLY	TYorPE[D]	PU[D]	並「本数[II]
LY(1)	TY®	_	
LY2	TY①		
LY③	TY2		
LY4	TY3		
LY⑤	TY4		
LY⑥	TY⑤	70	
LY ⑦	TY®		2
LY®	TY®		
LY®	TY10		
LY10	TY(1)		
LY(1)	TY10	_	
LY12	100	-	
LY(13)	200	_	