第1回ロボット部材開発検討会 令和3年9月3日

技術セミナーの概要説明

福島県ハイテクプラザ 南相馬技術支援センター 安齋弘樹

本年度開催する技術セミナーについて

本年度の技術セミナーの内容について

第1回技術セミナー(本日)

ロボット部材開発における福島大学の取組み

- 「産業用ロボットのためのロボットハンド」
- •説明者 福島大学 衣川 潤 准教授

県内企業の取組み紹介

- 沖マイクロ技研株式会社
- ・株式会社日本アドシス

第2回技術セミナー(令和3年12月頃)

(仮)金属積層造形装置の現状

第3回技術セミナー(令和4年2月頃)

(仮)他県における金属積層技術の現状

金属積層造形について

金属積層造形

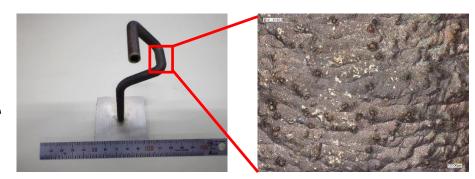
部材をどのように加工する?

- 一般的には、切削加工が多く用いられている。
- 一方、金属積層造形(金属3Dプリンタ)も普及してきており、一部の航空機部品の作製も行われている。

金属積層造形をテーマとしてセミナーを開催することで、現状、活用について共有を図る 金属積層造形装置を用いた実習を実施

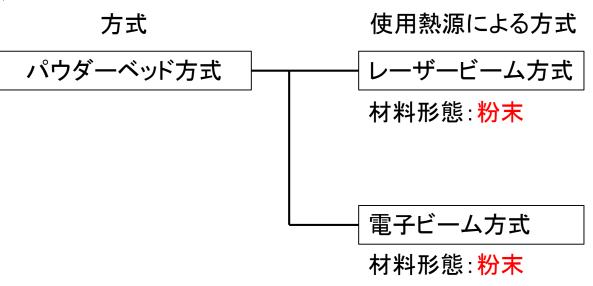
金属積層造形のメリット・デメリット

メリット

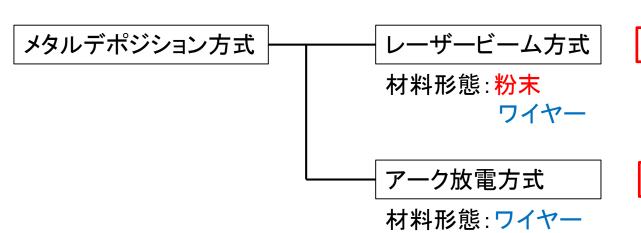

- •設計の自由度
- •複数部品の一体化

金属積層造形例

金属積層造形例


デメリット

- ・装置や材料が高価
- ・表面が粗い、精度が悪い
- 機械的特性が不明


金属積層造形装置

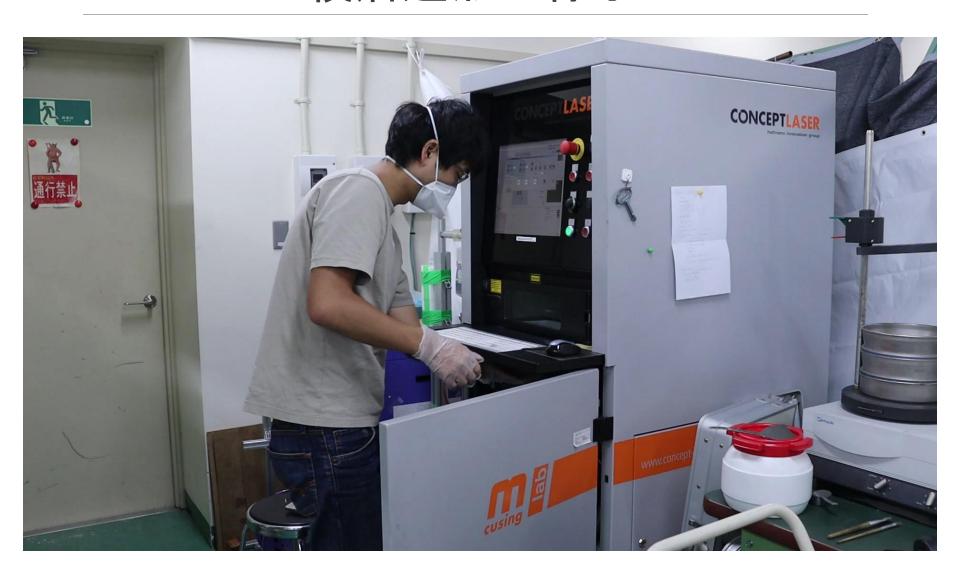
装置の種類

保有機関(例)

- •福島大学
- ・岩手県工業技術センター
- ・栃木県産業技術センター
- ・東京都立産業技術センター
- •東北大学
- ・岩手県工業技術センター

- 福島ロボットテストフィールド
- •新潟県工業技術総合研究所
- ・秋田県産業技術センター
- 福島ロボットテストフィールド
- ・東京農工大学

福島大学、および福島ロボットテストフィールドで 保有している金属積層造形装置について


福島大学で保有している金属積層造形装置

- ・パウダーベッド方式の金属積層 造形装置
- •使用金属: SUS304
- 熱源: 100Wファイバーレーザー
- •積層厚さ:15~30 μ m
- •レーザースキャンスピード:7m/s
- •焦点径:約50 μ m
- •造形速度:1-5cm³/h
- 装置サイズ:
 - $705(W) \times 1,220(D) \times 1,848(H)$ mm

Concept Laser社製 Mlab Cusing

積層造形の様子

試作サンプル例

福島ロボットテストフィールドで保有している装置

福島ロボットテストフィールド内に、メタルデポジション式の積層造形装置を2台保有

ヤマザキマザック(株)製 VARIAXIS j-600/5X AM

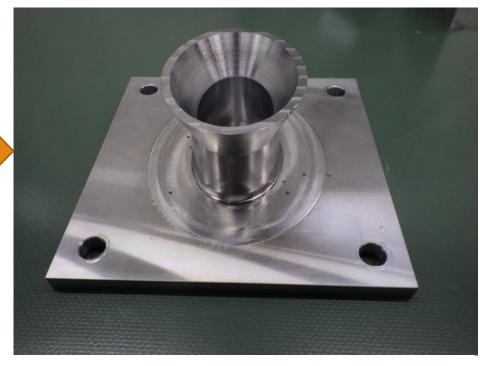
(株)ニコン製 Lasermeister 101A

2台の金属積層造形装置の特徴

	VARIAXIS j-600/5X AM (令和元年7月導入)	Lasermeister 101A (令和3年2月導入)
熱源	アーク放電(MIG溶接)	200W半導体レーザー
素材	Ф1.2mmのワイヤー(汎用品)	メーカー指定の粉末
使用可能な金属	普通鋼、ステンレス、 アルミ合金、耐熱合金、等	SUS316L、SKH51、 インコネル718
造形速度	速い(300cc/h程度)	遅い(1cc/h程度)
材料の交換	容易(ワイヤーの入替のみ)	半日程度
駆動軸数	5軸(XYZ+BC軸)	5軸(XYZ+AC軸)
ステージサイズ	Ф 600mm	Ф 150mm
加工パスの作成	CAM(南相馬ではhyperMILL)	専用ソフト(STL対応) Mastercam(同時5軸は不可)
造形サイズ	幅数mm、高さ2mm程度	幅0.8mm、高さ0.1mm
後加工	必須(同じ装置で可)	必要に応じて

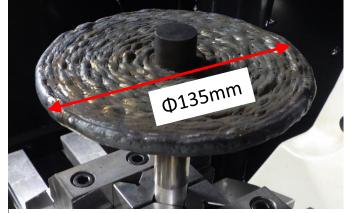
VARIAXIS j-600/5X AMの積層造形の様子

テーブルを90度傾斜させ、丸棒の周囲に積層


試作例: 傾斜を有する形状

高さ30mmの楕円形上を作製

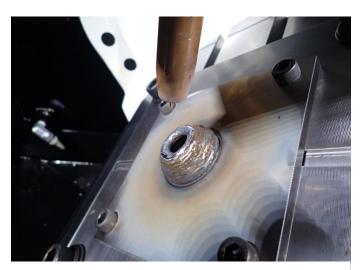
傾斜形状を作製



切削により形状を整える

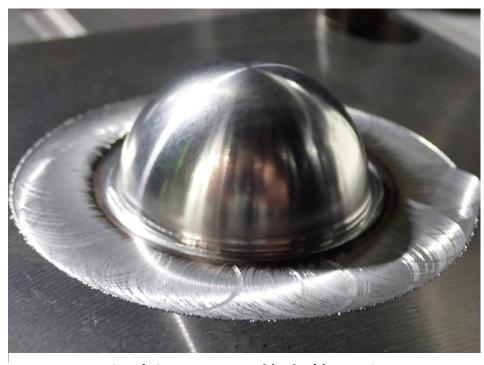
試作例: 円柱の周囲に作製した円盤形状

Φ20mmの丸棒の周囲に積層

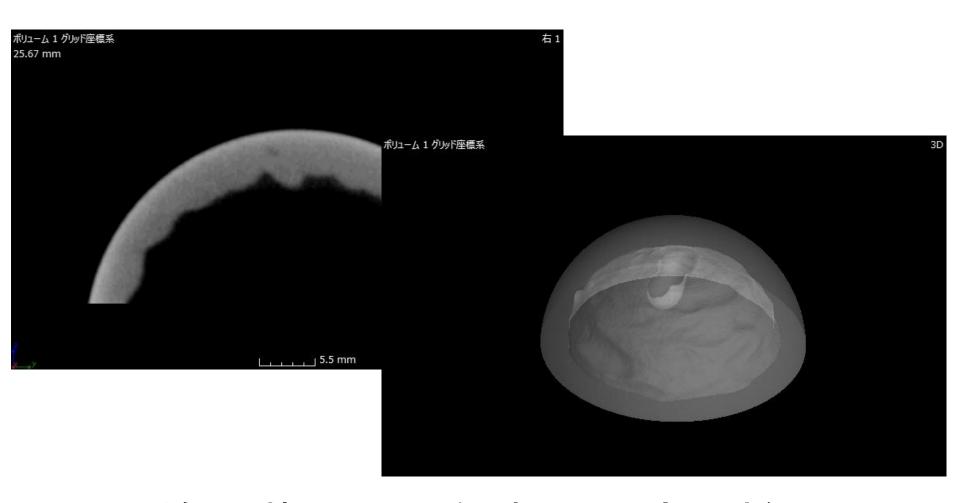


Φ135mmの円盤を造形

形状を整える


試作例:内部が中空な半球形状

傾斜させながら積層



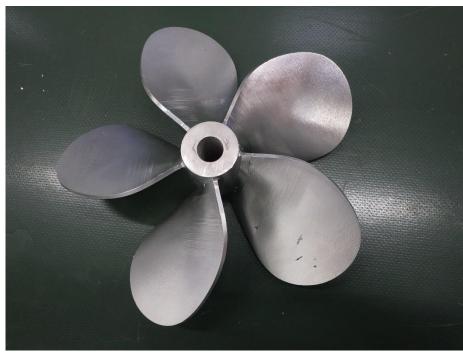
半球形状を造形

切削により形状を整える

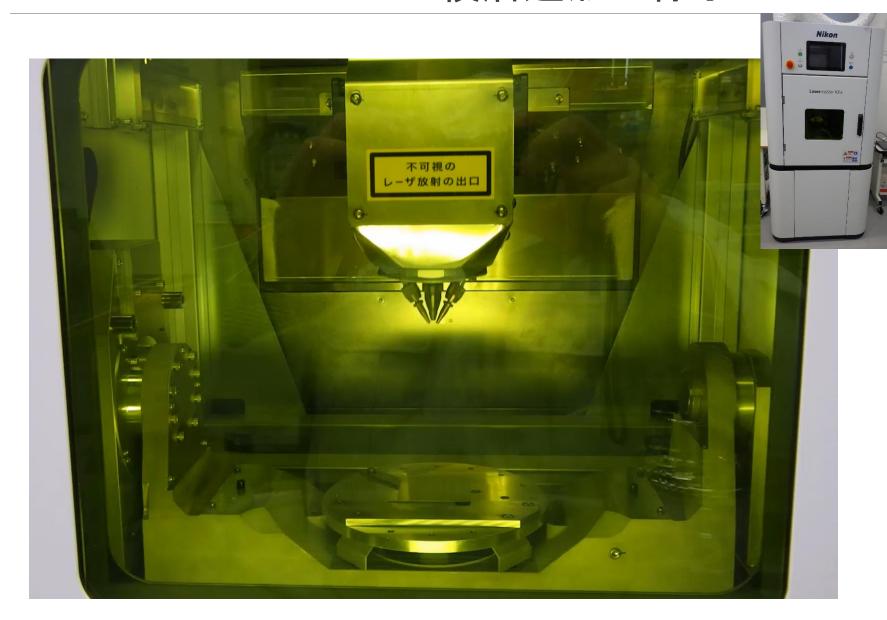
試作例: 内部が中空な半球形状



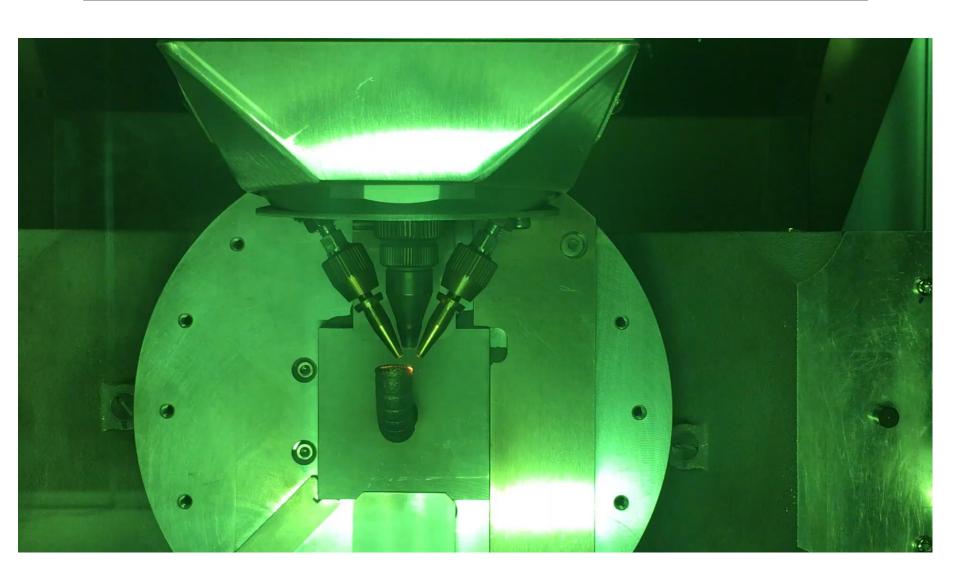
X線CT装置により観察した内部の様子


試作例:ブレード形状

Φ35mmの円柱形状

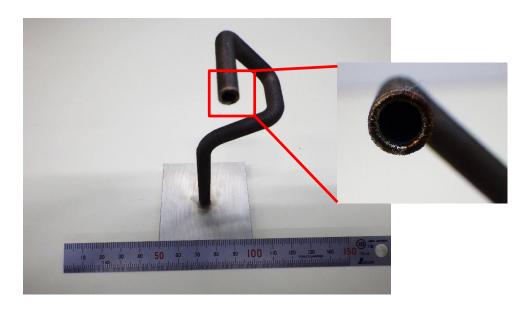


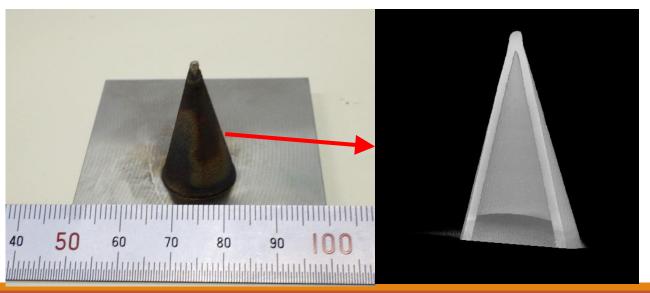
羽根形状を造形



切削により形状を整える

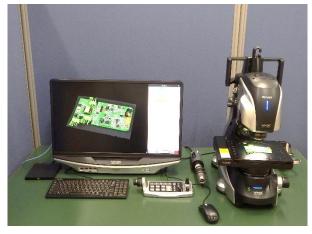
Lasermeister 101Aの積層造形の様子

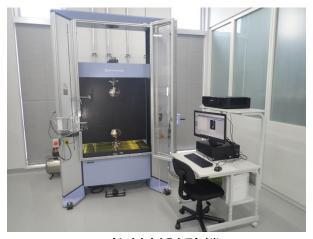


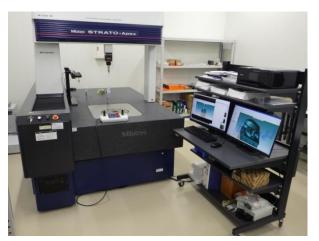

Lasermeister 101Aの積層造形の様子(割り出し)

Lasermeister 101Aの積層造形例

ロボット部材開発に活用できる装置、 技術の紹介


福島ロボットテストフィールドの設備紹介


X線CT装置


走查型電子顕微鏡

デジタルマイクロスコープ

万能材料試験機

CNC三次元測定機

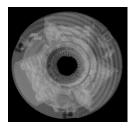
非接触三次元デジタイザ

非破壊試験

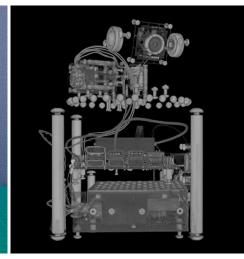
エックス線CT観察

X線により試料を透視して、断層写真を撮影します。 鉄鋼材料で80mm、アルミ合金で200mm程度の厚さまで 断層写真を撮ることができます。

ロボットなどのギアの噛合いやドローンなどの電子回路の立体配置などを観察できます。



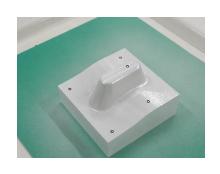
X線CT装置 TOSCANER-24500AVFD(東芝)



スポーツカー用のトルセンデフのCT像です。 内部にあるウォームギアの様子が観察できます。(素材:鉄鋼材料)

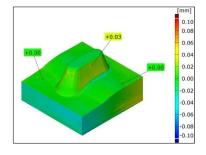
ロボットのCT像です。内部の回路や配線、レンズの状態を観察することができます。断線などの故障個所の判定が行えます。 (素材:プラスチック)

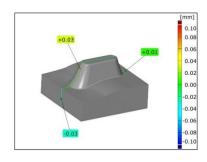
精密寸法測定


非接触三次元計測

接触式の三次元測定機とは違い、非接触で測定対象の表面形状を測定することができます。測定精度は接触式には及びませんが、短時間で高密度、広域な多量点群での測定が可能です。

測定された表面形状は、CADモデルとの形状比較や寸法の算出等に使用されます。


非接触三次元デジタイザ ATOS Compact Scan 12M(GOM社)

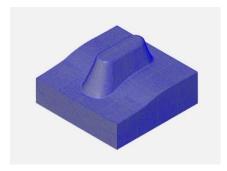

黒色や光沢のあるサンプルは測定できませんので、白色になるスプレーを塗布します。測定後は、水洗等で容易に除去可能です。

測定した表面形状です。小さい三角形の集まり(ポリゴン メッシュ)によって構成されます。

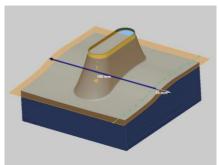
測定した表面形状と 設計CADモデルとの 偏差をカラーマップで 表示しました。偏差の 傾向が一目でわかり ます。

仮想断面で切り出した輪郭形状でも評価することができます。 寸法を算出することも可能です。

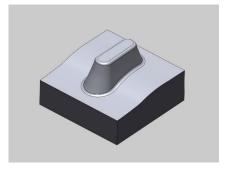
精密寸法測定


リバースエンジニアリング

非接触三次元測定機の測定結果は、ポリゴンメッシュ(STL 形式)になります。ポリゴンメッシュは3Dプリンタでは使用できますが、CADでの利用や編集が難しいデータ形式になります。

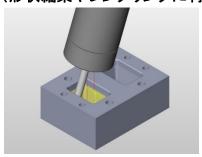

専用ソフトを使用してリバースエンジニアリングを行うことにより、ポリゴンメッシュからCADモデルを作成することが可能です。

作成したCADモデルは、主にCAD・CAM・CAEで使用されます。

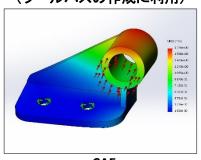

ポリゴンメッシュデータからCADモデルの生成

非接触三次元測定機による測定結果(ポリゴンメッシュ)

Geomagic DesignXを使用したリバースエンジニアリング



リバースエンジニアリング により作成したCADモデル


リバースエンジニアリングの 利用例

CAD (形状編集やレンダリングに利用)

CAM (ツールパスの作成に利用)

CAE (解析モデルとして利用)