平成 25 年度

事業概要報告書

福島県水産試験場

目 次

【 栽培漁業部 】	
放流マツカワの産卵生態解明と「産ませて獲る」を実践する栽培漁業体系の確立	1
被害漁場環境調査(いわき市沿岸磯根調査)	3
ヒラメ等海産物の放射性セシウムの取り込み、排出過程の解明(ヒラメケージ試験)	5
放射性物質影響解明調査(ヒラメ放流種苗追跡調査)	8
沿岸生態系における放射性物質の拡散過程の解明	10
【 水産資源部 】	
幼稚魚新規加入状況調査	11
調査船調査データによる新規加入状況の評価	13
沿岸性底魚類の分布水深	15
沖合性カレイ類の深浅移動と海況の関係	17
震災、操業自粛中における主要魚介類の資源動向	19
主要浮魚資源動向調査(カツオ・マグロ類)	21
魚介類の餌料生物における放射性セシウム濃度の推移	23
餌料生物と捕食魚の放射性セシウム濃度の関係	25
イカナゴ当歳魚における放射性セシウム濃度の経年変化	27
イシカワシラウオにおける放射性セシウム濃度の経年変化	29
原発事故後に発生した魚類の放射性セシウム蓄積状況	31
沿岸定着性魚類の生態学的半減期	33
タラ類2種における蓄積の差異	35
同一海域における魚種間比較	37
マダラにおける年齢による放射性セシウム蓄積の差異	39
コモンカスべの体サイズ、採捕水深と放射性セシウムの関係	41
ヒラメのセシウム濃度と緯度の関係	43
ヒラメのセシウム濃度と水深の関係	45
ヒラメのセシウム濃度と年級の関係	47
ヒラメのセシウム濃度と雌雄別体重の関係	49
【 海洋漁業部 】	
主要浮魚資源動向調査(イワシ類、サバ類、アジ類等)	51
サンマ資源動向調査	53
沿岸浮魚漁況予測手法の開発	55
沿岸海沢予測手法の開発	57
【 漁場環境部 】	
貝毒についての動向把握	59
コウナゴ等漁場形成要因の解析(クロロフィルa、水温を用いた手法)	60
海洋基礎生産力と魚類生産の関係解明 (LNPネット・新稚魚ネット調査)	62
魚介類の放射性物質濃度の傾向	64

海水	海底土のモニ	タ	IJ	1	グ調本
1四/八、	144	/	ン	~	ノ DDU 日.

[種苗研究部】	
ホシ	/ガレイ優良種苗生産技術の開発 (①冷却海水飼育による親魚養成試験)	68
ホシ	ノガレイ優良種苗生産技術の開発(②ホシガレイ仔魚のワムシ摂餌と照度の関係)	70
ホシ	/ガレイ優良種苗生産技術の開発 (③仔魚期における照明・通気量の検討)	72
栽培	音漁業再建に資する省力・低コスト生産技術の開発	
(0	Dヒラメ仔魚のワムシ摂餌と表面照度の関係)	74
栽培	音漁業再建に資する省力・低コスト生産技術の開発(②アワビ親貝循環飼育試験)	76
サク	ア増殖指導事業	78
給創	耳飼育におけるヒラメ稚魚の放射性セシウムの取り込み、排出過程の解明	
(方	女射性セシウムの蓄積及び排出試験)	80
給創	耳飼育におけるヒラメ稚魚の放射性セシウムの取り込み、排出過程の解明	
(但	氐塩分海水飼育による放射性セシウム排出比較試験)	82
[相馬支場	
アサ	ナリ資源増殖技術の開発	84
松川	浦における幼稚魚生息状況調査	86
松川	川浦の水質調査	88
松川	川浦の底質水平分布調査	90
松川	浦のアマモ場調査	92
ヒト	トエグサ天然採苗調査	94
松川	浦の底質の放射性セシウム調査	96
松川	浦における放射性物質の移行、蓄積及び潜在的生物影響に関するモニタリング調査	98
ヒト	トエグサの加工に伴う放射性セシウムの動態	100
[研究課題一覧 】	102
[その他	
I	庶務一般	104
Π	平成24年度の刊行物	105
Ш	研究成果・外部発表・一般公開等	106
IV	職員名簿	117